Космические лучи порождают молнии, взаимодействуя с каплями воды
Именно такую гипотезу поддерживают недавние наблюдения, результаты которых проанализировали российские физики. Впрочем, их выводы о природе молний были немедленно оспорены, хотя доводы оппонентов трудно назвать «железобетонными»...
далее тут http://compulenta.computerra.ru/veshest … /10006633/
http://belka-andreeva.livejournal.com/187761.html
Молнии на поверхности земли
Молния представляет собой гигантский электрический искровой разряд между облаками и земной поверхностью, или между облаками, или между разными частями облака. Форма молнии обычно похожа на разветвленные корни разросшегося в поднебесье дерева. Длина линейной молнии составляет несколько километров, но может достигать 20 км и более. Основной канал молнии имеет несколько ответвлений длиной 2-3 км. Диаметр канала молнии составляет от 10 до 45 см. Длительность существования молнии составляет десятые доли секунды. Средняя скорость движения молнии 150 км/с. Сила тока внутри канала молнии доходит до 200000 А. Температура плазмы в молнии превышает 10000°С. Напряженность электрического поля внутри грозового облака составляет от 100 до 300 вольт/см, но перед разрядом молнии в отдельных небольших объемах она может доходить до 1600 вольт/см. Средний заряд грозового облака составляет 30-50 кулонов. В каждом разряде молнии переносится от 1 до 10 кулонов электричества. Наряду с наиболее распространенной линейной молнией иногда встречаются ракетообразная, четочная и шаровая молнии. Ракетообразная молния наблюдается очень редко. Она длится 1-1,5 сек и представляет собой медленно развивающийся между облаками разряд. К весьма редким видам молнии следует отнести и четочную. Она имеет общую длительность 0,5 сек и представляется глазу на фоне облаков в виде светящихся четок диаметром около 7 см. Шаровая молния в большинстве случаев представляет собой сферическое образование диаметром у земной поверхности 10-20 см, а на высоте облаков до 10 м. На Земле ежесекундно наблюдается в среднем около 100 разрядов линейной молнии, средняя мощность, которая затрачивается в масштабе всей Земли на образование гроз равняется 1018 эрг/сек. Интересно отметить, что энергия конденсации, выделяющаяся в грозовом облаке средних размеров с площадью основания около 30 км2 при дожде средней интенсивности, составляет около 1021 эрг. То есть, энергия, выделяющаяся при выпадении осадков из грозового облака, значительно превышает его электрическую энергию.
Формирование молнии
Наиболее часто молния возникает в кучево-дождевых облаках, тогда они называются грозовыми; иногда молния образуются в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.
Обычно наблюдаются линейные молнии, которые относятся к т. н. безэлектродным разрядам, так как они начинаются (и кончаются) в скоплениях заряженных частиц. Это определяет их некоторые, до сих пор необъяснённые свойства, отличающие молнии от разрядов между электродами. Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с мириадов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме несколько км3. Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках - внутриоблачные молнии, а могут ударять в землю - наземные молнии. Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле (см. Атмосферное электричество) с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую и световую.
Разряды молний могут происходить между соседними наэлектризованными облаками или между наэлектризованным облаком и землейРазряды молний могут происходить между соседними наэлектризованными облаками или между наэлектризованным облаком и землей. Разряду предшествует возникновение значительной разности электрических потенциалов между соседними облаками или между облаком и землей вследствие разделения и накопления атмосферного электричества в результате таких природных процессов, как дождь, снегопад и т.д. Возникшая таким образом разность потенциалов может достигать миллиарда вольт, а последующий разряд накопленной электрической энергии через атмосферу может создавать кратковременные токи от 3 до 200 кА.
Для объяснения электризации грозовых облаков был разработан ряд теорий. В 1929 Дж.Симпсон предложил теорию, которая объясняет электризацию дроблением дождевых капель потоками воздуха. В результате дробления падающие более крупные капли заряжаются положительно, а остающиеся в верхней части облака более мелкие – отрицательно. В основе индукционной теории, предложенной в 1885, лежит предположение о том, что электрические заряды разделяются электрическим полем Земли, имеющей отрицательный заряд.
В теории свободной ионизации Ч.Вильсона предполагается, что электризация возникает как результат избирательного накопления ионов находящимися в атмосфере капельками разных размеров. Возможно, что электризация грозовых облаков осуществляется совместным действием всех этих механизмов, а основным из них является падение достаточно крупных частиц, электризуемых трением об атмосферный воздух.
И напоследок интересный факт:
Молнии в 6 раз чаще попадают в мужчин, чем в женщин.
Только в США от молний ежегодно страдает около 1000 человек, 200 из которых гибнет. Человеческое тело является хорошим проводником, его мускулы и кровеносные сосуды в значительной степени состоят из воды, а его нервы способны переносить электрические сигналы. Интересно, что 86% жертв – мужчины. То ли у них физиология особенная, избыток тестостерона, то ли они бывают на свежем воздухе чаще женщин, проводящих большую часть жизни дома. Но все же человек имеет значительные шансы на выживание во время удара молнии. Конечно, температура во время разряда очень высока, но длится он обычно недолго и не всегда приводит к серьезным ожогам. Основной ток молнии часто проходит по поверхности тела, поэтому большинство пораженных молнией людей не умирают.
Человеку, которого гроза застала на открытом месте, будь то на рыбалке, охоте или загородной прогулке надо попытаться найти заземленное убежище. Таким убежищем может послужить лес. Не рекомендуется прятаться возле одиноких деревьев, поскольку возможно короткое замыкание между деревом и человеком (сопротивление человека около 500 Ом – меньше, чем у дерева). Нельзя во время грозы плавать в воде, поскольку вода является хорошим проводником электричества.
Признаком того, что вы находитесь в электрическом поле, могут послужить вставшие дыбом волосыПризнаком того, что вы находитесь в электрическом поле, могут послужить вставшие дыбом волосы, которые начнут издавать легкое потрескивание. Но это только сухие волосы. Если поблизости нет убежища, для уменьшения опасности во время грозы лучше сесть на корточки в наиболее низком месте и переждать ненастье. Если гроза успешно миновала, можно продолжить занятие своим делом. Если же молния вас задела, но вы еще в состоянии думать, следует как можно скорее обратиться к врачу. Медики полагают, что человек, выживший после удара молнии, даже не получив сильных ожогов головы и тела, впоследствии может получить осложнения в виде отклонений в сердечно-сосудистой и невралгической деятельности от нормы. Впрочем, может и обойтись.
Известен случай паркового смотрителя из США Роя Сэлливана, в которого на протяжении жизни семь раз (в период с 1942 по 1977 год) била молния, притом весьма не слабо, с потерей пальцев, ожогом груди, спины и конечностей, два раза на его голове загорались волосы. Однако умер он не от грозы, а покончил с собой от неразделенной любви. Хотя и не доказано, что причиной избыточных чувств не могли стать и молнии.
Физические свойства молнии
Формирование молнии
Наиболее часто молния возникает в кучево-дождевых облаках, тогда они называются грозовыми; иногда молния образуются в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.
Обычно наблюдаются линейные молнии, которые относятся к т. н. безэлектродным разрядам, так как они начинаются (и кончаются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами. Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с мириадов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме несколько км³. Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках - внутриоблачные молнии, а могут ударять в землю - наземные молнии. Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле (см. атмосферное электричество) с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую и световую.
Наземные молнии
Процесс развития наземной молнии состоит из нескольких стадий. На первой стадии, в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными электронами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизуют их. Таким образом возникают электронные лавины, переходящие в нити электрических разрядов - стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью - ступенчатому лидеру молнии.
Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 200 000 метров в секунду.
По мере продвижения лидера к земле напряжённость поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода.
В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду. Температура канала при главном разряде может превышать 25 000 °C. Длина канала молнии может быть от 1 до 10 км, диаметр - несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары.
Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому. Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 сек. Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию - светящуюся полосу.
Внутриоблачные молнии
Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору, меняясь от 0,5 в умеренных широтах до 0,9 в экваториальной полосе. Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением, так называемыми атмосфериками. Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие громоотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт - особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках.
Взаимодействие молнии с поверхностью земли
«В каждую секунду около 50 молний ударяются в поверхность земли, и в среднем каждый ее квадратный километр молния поражает шесть раз за год».
Поверхность земли и молния
При попадании молнии непосредственно в грунт возможно образование своеобразного минерала фульгурита, представляющего собой, в основном, спёкшийся кварцевый песок.
Люди и молния
Молнии - серьезная угроза для жизни людей. Поражение молнией возможно как при пребывании под открытым небом, так и в закрытом помещении. Чаще поражаются люди находящиеся во время грозы на открытой местности, укрывающиеся от дождя под деревьями и вблизи от работающего электрооборудования (включенного в сеть телевизора, радиоприемника).
В организме пострадавших отмечаются такие же патологические изменения, как при поражении электротоком. Жертва теряет сознание, падает, могут отмечаться судороги, часто останавливается дыхание и сердцебиение. На теле обычно можно обнаружить «метки тока», места входа и выхода электричества. В случае смертельного исхода причиной прекращения основных жизненных функций является внезапная остановка дыхания и сердцебиения, от прямого действия молнии на дыхательный и сосудодвигательный центры продолговатого мозга. На коже часто остаются так называемые знаки молнии, древовидные светло-розовые или красные полосы, исчезающие при надавливании пальцами (сохраняются в течение 1 - 2 суток после смерти). Они - результат расширения капилляров в зоне контакта молнии с телом.
При поражении молнией первая медицинская помощь должна быть неотложной. В тяжелых случаях (остановка дыхания и сердцебиения) необходима реанимация, её должен оказать, не ожидая медицинских работников, любой свидетель несчастья. Реанимация эффективна только в первые минуты после поражения молнией, начатая через 10 - 15 минут она, как правило, уже не эффективна. Экстренная госпитализация необходима во всех случаях.
Жертвы молний
В мифологии и литературе:
Асклепий, Эскулап сын Аполлона - бог врачей и врачебного искусства, не только исцелял, но и оживлял мёртвых. Чтобы восстановить нарушенный мировой порядок Зевс поразил его своей молнией.
Фаэтон - сын бога Солнца Гелиоса - однажды взялся управлять солнечной колесницей своего отца, но не сдержал огнедышащих коней и едва не погубил в страшном пламени Землю. Разгневанный Зевс пронзил Фаэтона молниями, а тело его бросил в реку.
Исторические личности:
Российский академик Г. В. Рихман - в 1753 году погиб от удара молнии.
Деревья и молния
Высокие деревья - частая мишень для молний. На реликтовых деревьях-долгожителях легко можно найти множественные шрамы от молний. Считается, что одиночно стоящее дерево чаще поражается молнией, хотя в некоторых лесных районах шрамы от молний можно увидеть почти на каждом дереве. Сухие деревья от удара молнии загораются. Чаще удары молнии бывают направлены в дуб, реже всего - в бук, что, по-видимому, зависит от различного количества жирных масел в них, представляющих большое сопротивление электричеству.
Молния проходит в стволе дерева по пути наименьшего электрического сопротивления, с выделением большого количества тепла, превращая воду в пар, который раскалывает ствол дерева или чаще отрывает от него участки коры, показывая путь молнии. В следующие сезоны деревья обычно восстанавливают поврежденные ткани и могут закрывать рану целиком, оставив только вертикальный шрам. Если ущерб является слишком серьезным, ветер и вредители в конечном итоге убивают дерево. Деревья являются естественными громоотводами, и, как известно, обеспечивают защиту от удара молнии для близлежащих зданий. Посаженные возле здания, высокие деревья улавливают молнии, а высокая биомасса корневой системы помогает заземлять разряд молнии.
Из деревьев, пораженных молнией, делают музыкальные инструменты, приписывая им уникальные свойства.